Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111894

RESUMO

Water and nitrogen are essential for potato growth and development. We aim to understand how potato adapts to changes in soil water and nitrogen content. Potato plant adaptations to changes in soil moisture and nitrogen levels were analyzed at the physiological and transcriptomic levels in four treatment groups: adequate nitrogen under drought, adequate nitrogen under sufficient irrigation, limited nitrogen under drought, and limited nitrogen under sufficient irrigation. Many light-capture pigment complex genes and oxygen release complex genes were differentially expressed in leaves when nitrogen levels were increased under drought conditions, and several genes encoding rate-limiting enzymes in the Calvin-Benson-Bassham cycle were up-regulated; furthermore, leaf stomatal conductance decreased, whereas the saturated vapor pressure difference and relative chlorophyll content in the chloroplasts increased. StSP6A, a key gene in potato tuber formation, was down-regulated in response to increased nitrogen application, and the stolon growth time was prolonged. Genes related to root nitrogen metabolism were highly expressed, and protein content in the tuber increased. Weighted gene co-expression network analysis (WGCNA) revealed 32 gene expression modules that responded to changes in water and nitrogen levels. A total of 34 key candidate genes were identified, and a preliminary molecular model of potato responses to alterations in soil water and nitrogen content was constructed.

2.
Phytopathology ; 113(3): 528-538, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36173283

RESUMO

Hormones play an important role in plant disease resistance and defense. Transcriptome data of late blight-resistant potato genotype SD20 treated by ethylene (ET), jasmonate (JA), salicylic acid (SA), and Phytophthora infestans CN152 was analyzed to assess the role of the ET/JA/SA regulatory network in plant disease resistance and defense and predict key resistant genes. The results show that there was significant crossover of differentially expressed genes among all treatments, and common and specific plant disease interaction genes for the ET, JA, and SA treatments were differentially expressed in the CN152 treatment. The resistance and defense genes of the potato genotype SD20 could be induced to regulate metabolic and hormone signaling pathways by alternative splicing in all treatments. Further analysis found that JA and ET pathways can work together synergistically. JA/ET and SA pathways antagonize each other to initiate the expression of calmodulin-domain protein kinases and calmodulin/calmodulin-like and RPM1-interacting protein 4 genes, and they activate HSP-mediated hypersensitive response and defense-related genes. Meanwhile, nine defense genes, including wound-responsive AP2-like factor, glutathione-s-transferase, serine/threonine-protein kinase BRI1, and Avr9/Cf-9 rapidly elicited protein genes, were obtained using weighted gene coexpression network analysis, which provided reliable targets for functional verification. This study provides a theoretical reference for the comprehensive application of plant hormones to improve resistance to potato late blight disease.


Assuntos
Phytophthora infestans , Solanum tuberosum , Reguladores de Crescimento de Plantas/farmacologia , Solanum tuberosum/genética , Resistência à Doença/genética , Calmodulina/genética , Calmodulina/metabolismo , Doenças das Plantas/genética , Genótipo , Phytophthora infestans/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo
3.
DNA Res ; 28(6)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609514

RESUMO

Simple sequence repeats (SSRs) are important sources of genetic diversity and are widely used as markers in genetics and molecular breeding. In this study, we examined four potato genomes of DM1-3 516 R44 (DM) from Solanum phureja, RH89039-16 (RH) from Solanum tuberosum, M6 from Solanum chacoense and Solanum commersonii to determine SSR abundance and distribution and develop a larger list of polymorphic markers for a potentially wide range of uses for the potato community. A total of 1,734,619 SSRs were identified across the four genomes with an average of 433,655 SSRs per genome and 2.31kb per SSR. The most abundant repeat units for mono-, di-, tri-, and tetra-nucleotide SSRs were (A/T)n, (AT/AT)n, (AAT/ATT)n, and (ATAT/ATAT)n, respectively. The SSRs were most abundant (78.79%) in intergenic regions and least abundant (3.68%) in untranslated regions. On average, 168,069 SSRs with unique flanking sequences were identified in the four genomes. Further, we identified 16,245 polymorphic SSR markers among the four genomes. Experimental validation confirmed 99.69% of tested markers could generate target bands. The high-density potato SSR markers developed in this study will undoubtedly facilitate the application of SSR markers for genetic research and marker-pyramiding in potato breeding.


Assuntos
Solanum tuberosum , Marcadores Genéticos , Repetições de Microssatélites , Melhoramento Vegetal , Polimorfismo Genético , Solanum tuberosum/genética
4.
ACS Appl Mater Interfaces ; 13(38): 45385-45393, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34519490

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) coupled with hydrogen evolution reaction (HER) is a renewable route to produce syngas (CO + H2), an essential feedstock for liquid fuel production. However, the development of high-performance electrocatalyst with tunable H2/CO ratio, high-rate syngas production, and long-term electrochemical stability remains challenging. Here, a metal three-dimensional (3D) printing technique followed by dealloying was utilized to develop three-dimensional hierarchical porous (termed as 3D hp) CuAg catalysts for the concurrent generation of CO and H2. By purposely designing the precursor compositions, the resultant 3D hp CuAg catalysts with a high density of phase-segregated Ag and Cu nanodomains exhibit a tunable H2/CO ratio from 3:1 to 1:2. Through further porosity engineering, the 3D hp CuAg catalysts show significantly enhanced syngas production rate of 140 µmol/h/cm2 and electrochemical stability up to 140 h (which is the highest value reported so far). The remarkable electrochemical stability of the 3D hp CuAg arises from three-level hierarchical porous configurations, wherein the macroporous structure benefits gas bubble growth and detachment, the microporous structure stabilizes the active nanoporous layer, while the nanoporous structure provides a large active surface area and enables efficient mass transfer. The results of this study offer a new vision for the development of hierarchically porous catalysts for CO2 reduction.

5.
ACS Appl Mater Interfaces ; 13(6): 7227-7237, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33550809

RESUMO

Finding highly efficient and reusable catalysts for advanced oxidation processes is a crucial endeavor to resolve the severe water pollution problems. Although numerous nanocatalysts have been developed in the past few decades, their recyclability along with sustainably high catalytic efficiency still remain challenging. Here, we propose a new strategy for designing efficient and reusable catalysts, that is, introducing Cu as a reductant into a metallic glass-based catalyst and constructing three-dimensional hierarchical porous architectures via a laser 3D printing technique. The as-printed 3D porous MG/Cu catalysts exhibit exceptional catalytic efficiency in degrading RhB with a normalized rate constant approximately 620 times higher than commercial nano zero-valent iron, outperforming most reported Fenton-type catalysts so far. Strikingly, the catalysts exhibit an excellent reusability and can be used more than 100 times (the highest record so far) without apparent efficiency decay. It is revealed that Cu-doping could improve the surface reducibility and promote the electronic transfer, rendering the 3D-printed MG/Cu catalysts with a sustainably active Fe(II)-rich surface and, therefore, unprecedented reusability. This work offers a broadly applicable design route for the development of advanced catalysts with an outstanding combination of activity and reusability for wastewater treatments.

6.
Anal Chem ; 92(24): 15705-15710, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33270418

RESUMO

We enhanced the sample throughput of microplate-based photothermal detection by using a semicylindrical prism to expand a point laser source to a long beam for illuminating multiple wells. Coupled with four epoxy-coated thermocouples in alignment with wells on a 96-well microplate, four parallel immunoassays of C-reaction protein (CRP) with antibody-conjugated gold nanoparticles can be simultaneously performed. The sample throughput is further increased by mounting the Styrofoam-enclosed microplate onto a translational/elevator stage so that immunoassays and thermocouple rinse/drying cycles can be implemented in a programmed fashion. The automated assay with three rinse/drying cycles takes only 34.5 min for four samples or 8.62 min/sample, whereas the manual mode with a single thermocouple and a point light source requires at least 66 min for just one sample. With careful calibration of the energy distribution of the expanded laser beam and controllable immersion of the thermocouples, excellent well-to-well (RSD = 1.3%) and cycle-to-cycle (RSD = 4.0%) reproducibility can be attained. The temperature changes can be correlated with the CRP concentration by the Langmuir isotherm, and the low limit of detection, 0.52 ng/mL or 4.33 pM, is well below the plasma CRP levels of both healthy people (<5 µg/mL) and patients (10-500 µg/mL). The serum CRP concentrations quantified by our plate reader are in excellent agreement with the immunoturbidimetric results, demonstrating that this cost-effective, robust, and high-throughput mode for microplate-based immunoassays is amenable to detecting biomarkers in many clinical samples.


Assuntos
Proteína C-Reativa/análise , Ouro/química , Ensaios de Triagem em Larga Escala , Imunoensaio , Nanopartículas Metálicas/química , Temperatura , Humanos , Processos Fotoquímicos
7.
ACS Appl Mater Interfaces ; 11(20): 18755-18762, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31026134

RESUMO

A polythiophene-based solar cell (PTSC) is constructed by photoelectrochemically polymerizing thiophene onto an ultrathin compact TiO2 layer (150 nm thick) covered with a sub-monolayer of tethered 3-{5-[ N, N-bis(4-diphenylamino)phenyl]thieno[3,2- b]thiophen-2-yl}-2-cyano-acrylic acid dye (ca. 10% coverage). The influence of morphology and thickness of the PT film on the photocurrent generated by the PTSC was investigated. With a 270 nm thick PT film and 2,2',7,7'-tetrakis( N, N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene serving as the hole-transport material, the PTSC exhibited a short-circuit current density JSC of 12.90 ± 0.63 mA/cm2, an open-circuit voltage VOC of 0.81 ± 0.01 V, and a fill factor of 0.72 ± 0.01. The high conversion efficiency (7.52 ± 0.58%) of the PTSC is attributed to the controlled PT growth along the ordered and spatially accessible dye molecules at the compact TiO2 layer, which facilitates charge transfer, prevents the hole/electron recombination, and simplifies the polymer solar cell construction with a stable and easily processable material.

8.
J Hazard Mater ; 314: 41-50, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27107234

RESUMO

Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO2/graphene nanocomposites (N-RGO/TiO2) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO2 nanocrystals and graphene, but also the nitrogen dopant for TiO2 nanocrystals and graphene. During the hydrothermal process, facets of TiO2 nanocrystals were modulated with addition of HF, and sizes of TiO2 nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH2). The obtained N-RGO/TiO2 nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO2 samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO2 catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO2-N/F (61%) in 3h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...